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Rapidly converging algorithms for the minimization of the conformational energy function 
of polymer chains use the gradient of the conformational energy. We have developed an 
efftcient algorithm for this gradient which is especially useful in the case of many geometrical 
variables because the calculation time is only weakly dependent on the number of variables. 

1. INTRODUCTION 

Large molecules, e.g., polymer chains, often have a large degree of flexibility and 
many different conformations [ 11. These conformations may be analyzed by 
minimizing the conformational energy with respect to an appropriafe set of 
geometrical variables 121. As is well known, the parts of the conformational energy 
depending on the atomic distances may be calculated by a matrix algorithm due to 
Eyring [ 31. Now a minimization algorithm for a function with many variables which 
will converge rapidly needs not only the function but also its gradient or even its 
second derivatives. 

We have therefore developed an efficient matrix algorithm for the calculation of the 
gradient of the conformational energy. It is especially useful in the case of a large 
number of variables because the calculation time is weakly dependent on the number 
of variables. We are about to extend this algorithm to the second derivatives and to 
the case of several interacting chains (condensed polymers). This will be published 
later. 

2. GEOMETRICAL DESCRIPTION OF A POLYMER CHAIN 

In conformational analysis, the energy usually consists of several parts. They are 
listed in Table I. 

As nonbonded and coulomb interactions depend on the distance, these energies are 
more easily calculated in Cartesian coordinates than in chemical or inner coordinates 
(bond lengths, valence angles, dihedral angles). On the other hand, hindered internal 
rotation, etc. are easily calculated in chemical coordinates. 

We decided to use chemical coordinates as basic variables, because the sometimes- 
needed restrictions (fixed bond lengths or bond angles) are thus very easily realized. 
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TABLE I 

Parts of the Conformational Energy and Their Representation in 
Different Types of Coordinates 

Type of coordinates 

Type of energy 

Nonbonded interaction 
(Lennard-Jones or Buckingham type) 

Coulomb interaction 

Cartesian 

Easy 

Chemical 

Complicated 

Hindered interal rotation 
Bond length deformation 
Valence angle deformation 

Complicated Easy 

We therefore developed an effective algorithm which handles the energies of the 
nonbonded type. 

According to Eyring [3], rectangular coordinates are fixed to each atom of the 
backbone as in shown in Fig. 1. There are S(i) side group atoms belonging to the 
backbone atom i. They are denoted with the position vectors viqj in the local system i 
(vi.O = 0; j = l,,..., S(i)). 

The local systems are connected by orthogonal transformations. The transfor- 
mation i + i + 1 is done by the matrix 

i 

cos a’ sin ai 0 

sin ai cos (oi -cos ai cos cpi sin pi 

sin ai sin o’ -cos ai sin cpi -cos (2 

(1) 

FIG. 1. Backbone with local rectangular coordinates: i, number of the local system; e;, orthonormal 
vectors in the local system i (k = 1, 2, 3); a’, valence angle; 9j, dihedral angle (planar backbone: all 
cpi = 0); ai, vector of bond length i+ i + 1, ai = ai ei,+‘. 
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The inverse transformation i + 1 -+ i is done by T’= (f’))‘. By means of these 
matrices, all vectors are transformed to a reference system i = m (see Eqs. (1 l)-( 19)). 
Thus it is possible to calculate the distances. 

In the following sections, the backbone variables (see Fig. 1) are denoted by 

5’ = (a’, $4, a’). 

The side group variables are either the Cartesian components of the vectors vi,j or 
the corresponding spherical polar coordinates. We call the side group variables 2i.i.‘J 
(p = 1, 2, 3). 

A matrix n of all variables may be defined as 

1 i.i = (g’, ii..‘). 

3. CALCULATION OF THE CONFORMATIONAL ENERGY AND ITS GRADIENT 

3.1 Basic Equations 

In the following sections, only those parts of the conformational energy are 
considered which are dependent on the distance r of nonbonded atoms. The 
interaction between the atoms s and t may then by written as 

US’ = US’(rS’) = US’[ 1 x’(q) - x’(q)1 I’ (2) 

where x’ is the position vector in the reference system i = m of the atom I (I = s, t). 
The total nonbonded interaction of N atoms is given by the double sum 

In order to calculate this energy, all difference vectors x’ - x’ have to be calculated 
by means of the transformation formulas (1 l)-( 19). Then the distances r”’ are 
calculated and the summation of the US’ can be performed. 

The derivative of the energy with respect to an arbitrary variable qk ()7/, E 11) is 

The sum (4) reduces to 

(4) 

au I T7 aus’ a9 aus’ ad -=- 
ag, 2 - $.I-- I ( axS’all,+axl’arl,. ) 

581/48/l-4 
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Now we use US’ = 7JtS and I” = rrs to get 

The first term of Eq. (5) in brackets is easily given by 

(6) 

The derivative XJSt/W is obtained from Us’(rSt), the difference vectors and distances 
are calculated as explained above. 

The special properties of the second term axs/arlk (Eq. (5)) are derived in the 
following sections. 

3.2 Properties of the Derivatives of the Position Vectors 

The position vectors x’ are now characterized in more detail (in the same way as 
v): The position of atom j belonging to system i is described by xi-j (origin in coor- 
dinate system m; j = 0 backbone atom; j = l,..., S(i) side group atoms). Equation (5) 
now becomes 

z = + y:) au ad,j 
a’?/( iy, j~oz’arl,’ (7) 

Index i runs over all backbone systems (G is the number of backbone atoms), and j 
runs over all atoms in system i. The number S of side group atoms depends on i. 

It is easy to see that the second term axi’j/aqk vanishes in many cases. Taking r]i 
to be a variable k in system q it can be seen, with Fig. 2, that 

&‘,J’ = 0 

aq; f 01 
for m < i <q, 

for m <q < i, 
upper backbone 

f 0, 
= 0, (8) 

m  9 I 

FIG. 2. Subdivision of a position vector with respect to system q. The variable al: is shown as a 
valence angle. 
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Using Eq. (S), we divide Eq. (7) into three parts: 

au =-- 
all k i>m 

au I 
+(?'7a IL 

+g . (10) 
i,: m  

The systems of the backbone have the numbers G,, G, t l,..., G, - 1, G,. With 
respect to the recursion formula developed below, it is necessary to start the 
summations over the systems from the ends of the backbone, i.e., i = G,, G, - l,.... 
and i= G,, G, $ l,.... 

In order to calculate aU/aqi, only one of the three terms of Eq. (9) must be 
considered; two always vanish. Moreover, the summation over i must be carried out 
only until i = q (see Eq. (8)). Both effects reduce computing time. 

3.3 Transformation of the Position Vectors 

In order to deduce the recursion formula, it is useful to distinguish between the 
vectors characterizing backbone atoms and the vectors characterizing side group 
atoms (cf. Fig. 3). We write 

and 

(backbone), 

si..i = xi.i 3 jZ 0, (side group). 

The transformation of the vectors vi*j (given in the local systems) to the vectors 
x’*j (given in the reference system m) is done recursively by means of the matrices T’. 
The recursion starts from the chosen reference coordinate system m and extends to 
both chain ends (Eqs. (12) and (16)). 

For i > m we have 

xi,j = gi + Mi-I . vi,j, 
(11) 

m  I 

FIG. 3. Description of backbone and side group atoms. 
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where 
i-l 

Mi-’ = n T/ = M’-2 . Ti-1, 

/=??I 

with Mm-’ = E (unity matrix). 
For vi,’ s 0, we have 

gi=g’-’ +Mi-I . ai-I, g”=O. 

It is important to note that 

g' 2z.z gygm, 5 m+ I,..., g’- 1). 
For side group atoms (j # 0), we have 

si.j = gi + pi-1 . vi.j, 

with 

For i = m we have 

si.j = siJ(gm, gm+ I,..., gi- 1, hi,.i). 

XmJ = Sm.j = p-J 

For i < m the formulas are analogous. 

xiJ = gi + hi . ,i.j, 

where 

/=m-I 

M”‘,E (unity matrix). 

For vi*’ s 0 we have 

xiyO = gi, gi= gitl-$gi+l . ,i, g”’ = 0, 

with 

And finally, 

g’= g’(y-‘, !y2 )..., 5’). 

si.i = gi + Gi . vi,j, 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

with 

sivj = siJ(gm- I, cm-2 ,..., gi, ki..i). 
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3.4 Derivation of Recursion Formulas for the Gradient 

We now continue to investigate the three terms of Eq. (9). 

Case i = m 

Inserting Eq. (15) into the second term of Eq. (10) gives 

au 
ag 

k i=m 
(20) 

In the side group, we have &““j/~Yu~ = &“‘*‘/LU, (v depends only on the local side 
group variables). 

Taking A”*‘VP as a variable referring to the atom r in the system m (p = 1, 2, 3) we 

get 

(21) 

Case i > m 

Inserting Eq. (11) into the first term of Eq. (9) and considering a variable in 
system q, we get 

The matrices M are defined in Eq. (12). ’ 
We now look at aU/gqqPji>, and XJ/a~q~r~p~i>m which refer to the backbone part 

or the side group part of aU/a$?li,, and get 

au au =-. alqlr.p i>m ae 
Mq-1 avq.r .- a14.rsP 

and 

(24) 

I For the calculations of the matrices Ml-‘, we can use the fact that after the recursive calculation of 
the conformational energy (Eqs. (lt(3), (1 Ip( 19)X the product matrices M”“-I, MGU (Case i ( m) at 

both chain ends are available. Therefore, it is convenient to invert the recursion formula Eq. (12). We 
then get 

M’-2 =M’Ll pl, 
(12a) 

From this and from Eq. (8), the method for developing a recursion formula for the derivatives which 
start at the chain ends is obvious. 
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While Eq. (23), valid for the sidegroups, has its final form, a recursion formula is 
derived from Eq. (24). By means of the equation for the derivatives of the transfor- 
mation matrices 

(remember that i3T’/d<q3p = 0 for q # 1, and therefore 8Mi/a~q9p = 0 for q < i) and 
(cf. Eq. (8)) 

agi ;;’ 8M’ I 
-= .- 
sly p ,ymjxi+J+Mt (gp 

(remember that aal/at q.p = 0 for q # I), Eq. (24) may be written as 

au = ;” y au 

atq’p i>m iZ,, jZl 
jg  [/Ll (&![!Tk) *al+qgq 

au 

+g* (6 j-- TX) * viJ 1. 

If we develop Eq. (27) for consecutive backbone systems q, we get 

q = Gp = n. 

au 
ay”vp i>m =O. 

q=n-1. 

(26) 

(27) 

(28) 

(29) 

au + ------Ye M”-” . aT”-2 . a”-2 + M”-3. aT”-2 . T”-’ a”-’ 
a<n-2.P 23x”q-l ayn-2.P . 

1 

au 
+ ~.Mn2.~+~.M”-‘.~.Tn-‘.v”.‘i. (30) 
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The upper limit j = S depends on the actual value of the system index in each term 
(i.e., n or n - 1; in general, n, Iz - l,..., q + 1). 

Now we rearrange the terms in Eqs. (29) and (30). 

q=n-1. 

(31) 

Here 0 denotes the dyadic product, and .. the scalar product of matrices. We 
introduce the following abbreviations: 

and start the recursions with 

Hence 

C”-1 = A” o a”-‘, 

D”-’ = B”, 

F”-’ = A”. 

au aT”-’ 
am-t,p i>m=M”p2 *pa. ay-l,p 

(c"-'+D"-l)+Mn-'.. 

q = n - 2. Eq. (30) may then be written as 

aT"- 2 . ___ . . [Tn-' . C"-' + (A" + An-') o a'tmz 
ayn-2-p 

- n-2 

t T"-' . D”-’ + B”-‘1 + M”-2 ,. cF”-, + A,t-lj o da 
ay-2.p 

I 

With the recursions 

Cn-*=Tnpl .C"-' +(A"+A"-l)oa"-2, 

D-2 =T"-l . D"-' + B"-' 
9 

Fn-2=Fn-'+A"-', 

(32) 

(33) 

WI 

Wb) 

(34c) 

(31') 

(35) 

Wa) 

Wb) 

(36~) 
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we get 

This equation is of the same type as Eq. (3 1’) and can be easily generalized to 

au 3T4 
xq-p i>rn = Mq-’ &y.P 

.-.. (Cq+Dq)+MY . . (-$&). (37) 

with 
q+l 

Cq=Tqfl .Cq+‘+ \‘ Aioaq,c”<,=O Pa) 
i-C,) 

Dq=Tq+’ .Dq+l+Bq+‘,DG,,=o W) 

FQ = Fq+’ + Aq+‘, FG,, = 0. (38~) 

Case i < m 

The formulas for the case i < m are derived in an analogous way. For the side 
group variables we get 

au au a+ =-. ah4-r.P icm ac lw .V’ (39) 

For the backbone variables we get 

au aTq 
atq,p i<m 

&Yfq+ .-.. 
app 

(e” + aq, + let ’ . . (Bog&) (40) 

with 
q-1 

C4=?4-1 .cq-‘- \’ Aioaqp’,~G~=O 
- 

i--G, 

@=fq-l .fi)4-‘+Bq,fiGu-‘=0 

(414 

(4lb) 

(41c) 

4. COMPUTING STEPS 

We now summarize the sequence of steps to calculate the gradient in a computer 
program. 

(i) The backbone of the chain is given by the set of variables 5 (Fig. 1) 
together with the transformation matrices (Eq. (1)) and their derivatives. 

(ii) The side groups are defined by the local vectors viqi (Fig. 3) together with 
the set of variables I, from which the derivatives av’*j/aA are immediately obtained in 
the local coordinate systems. 
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(iii) Now the position vectors xi,j are calculated by recursive transformations 
of the locally defined vectors vigi to the reference system m (Eqs. (1 I)-( 19)). 

(iv) Using the x”j, the difference vectors and distances are obtained. Now the 
conformational energy I?‘(?‘) and Eq. (6) can be calculated. 

(v) Now we are ready to calculate the au/ah (Eqs. (21), (23), and (39)) and 
the au/at (Eqs. (37) and (40)) by means of the recursion formulas of Eqs. (38) and 

(41). 

One of the main features of this algorithm is the splitting of the double sum in Eq. 
(5). Thus, Eq. (6) is calculated independently of the variables r~. Therefore, the time 
of calculation is weakly dependent on the number of variables. 

5. QUANTITATIVE ESTIMATES OF THE EFFICIENCY 

A simple measure of the efficiency of an algorithm which calculates the gradient 
vector is the relative time 

CPU time for a gradient call 
’ = CPU time for a function call ’ 

It decreases with increasing efficiency and will approximately show no dependence on 
the details of the program and the machine. 

A simple algorithm (the precursor of our algorithm) calculates each element of the 
gradient vector independently. In this case we have, roughly, 7 - n (the number of 
variables). 

The numerical calculation of the gradient (finite difference approximation) needs at 
least n + 1 function calls. In order to get machine accuracy, between 2n + 1 and 
4n + 1 additional function calls are needed (see, e.g., routine E 04HBA of the NAG- 
library [4]). So we have 7 z n + I,..., 5n + 2. 

Measurements of 7 for our algorithm are given in Table II. 

TABLE11 

Measurement of the Relative Time 

Number of variables n Relative time r 

48 1.7 ,..., 1.8 
108 1.6 
120 1.5 
132 1.4 (..., 1.5 

Note. Relative time r = (CPU-time for gradient call)/(CPU-time for a function call) For a poly- 
ethylene chain with conformational defects. The energy function has n variables. 
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We chose problems of conformational defects in a polyethylene chain. The energy 
function depends on n = 48,..., 132 variables. The table clearly shows that the 
calculation of the complete gradient vector takes less than twice the time of a 
function call. The relative time r is not proportional to n. There is even a slight 
decrease in t with an increasing number of variables. 
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